Understanding of Ultrasonic Assisted Machining with Diamond Grinding Tool

نویسندگان

  • Kyung-Hee Park
  • Yun-Hyuck Hong
  • Kyeong-Tae Kim
  • Seok-Woo Lee
  • Hon-Zong Choi
  • Young-Jae Choi
چکیده

In this work, machining test was carried out in various machining conditions using ultrasonic vibration capable CNC machine. For work material, alumina ceramic (Al2O3) was used while for tool material diamond electroplated grinding wheel was used. To evaluate ultrasonic vibration effect, grinding test was performed with and without ultrasonic vibration in same machining condition. In ultrasonic mode, ultrasonic vibration of 20 kHz was generated by HSK 63 ultrasonic actuator. On the other hand, grinding forces were measured by KISTLER dynamometer. And an optimal sampling rate for grinding force measurement was obtained by a signal processing and frequency analysis. The surface roughness of the ceramic was also measured by using stylus type surface roughness instrument and atomic force microscope (AFM). Besides, the scanning electron microscope (SEM) was used for observation of surface integrality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

Development of Design and Manufacturing Support Tool for Optimization of Ultrasonic Machining (USM) and Rotary USM

Ultrasonic machining (USM) is a mechanical material removal process used to erode holes and cavities in hard or brittle work pieces by using shaped tools, high-frequency and an abrasive slurry. This paper addresses the concept and development of an expert system (ES) for hard and brittle material, such as glass, quartz, diamond, carbides, semi conducting materials, ceramic and graphite which ca...

متن کامل

Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on ...

متن کامل

Ultraprecision Diamond Turning of Glass with Ultrasonic Vibration

Some brittle materials have found wide applications because of their excellent thermal, chemical, and wear resistance characteristics. Impeding the use of these brittle materials in precision engineering applications is the fact that currently it is very difficult for them to be machined in a way that ensures high precision in form and to a good surface finish. A non-traditional or unconvention...

متن کامل

Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013